Curvature Tensor under the Complete Non-compact Ricci Flow

نویسندگان

  • LI MA
  • LIANG CHENG
چکیده

We prove that for a solution (M, g(t)), t ∈ [0, T ), where T < ∞, to the Ricci flow on a complete non-compact Riemannian manifold with the Ricci curvature tensor uniformly bounded by some constant C on M × [0, T ), the curvature tensor stays uniformly bounded on M × [0, T ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-forms and Ricci Flow with Bounded Curvature on Manifolds

In this paper, we study the evolution of L p-forms under Ricci flow with bounded curvature on a complete non-compact or a compact Riemannian manifold. We show that under curvature pinching conditions on such a manifold, the L norm of a smooth p-form is non-increasing along the Ricci flow. The L∞ norm is showed to have monotonicity property too.

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

A Property of Kähler-Ricci Solitons on Complete Complex Surfaces

where Rαβ(x, t) denotes the Ricci curvature tensor of the metric gαβ(x, t). One of the main problems in differential geometry is to find canonical structure on manifolds. The Ricci flow introduced by Hamilton [8] is an useful tool to approach such problems. For examples, Hamilton [10] and Chow [7] used the convergence of the Ricci flow to characterize the complex structures on compact Riemann s...

متن کامل

Schouten curvature functions on locally conformally flat Riemannian manifolds

Consider a compact Riemannian manifold (M, g) with metric g and dimension n ≥ 3. The Schouten tensor Ag associated with g is a symmetric (0, 2)-tensor field describing the non-conformally-invariant part of the curvature tensor of g. In this paper, we consider the elementary symmetric functions {σk(Ag), 1 ≤ k ≤ n} of the eigenvalues of Ag with respect to g; we call σk(Ag) the k-th Schouten curva...

متن کامل

Non-negative Ricci Curvature on Closed Manifolds under Ricci Flow

In this short paper we show that non-negative Ricci curvature is not preserved under Ricci flow for closed manifolds of dimensions four and above, strengthening a previous result of Knopf for complete non-compact manifolds of bounded curvature. This brings down to four dimensions a similar result Böhm and Wilking have for dimensions twelve and above. Moreover, the manifolds constructed here are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008